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Executive Summary 
 

Analysts must cope with uncertain and partial information, for such is the nature of 
intelligence analysis; however, little support is provided by present-day software for 
reasoning with uncertain numerical values (e.g. quantities, dates, and locations), uncertain 
nominal values (e.g. identities of individuals), or uncertain causative or associative 
relations (e.g., who reports to whom and how strictly). We have investigated the related 
problems and developed a prototype system with the following capabilities: 
 

• Representation of uncertainty as probability density functions. 
• Reasoning with uncertainty in order to determine relative likelihood of outcomes. 
• Proactive prioritization of further intelligence gathering for the purpose of reducing 

uncertainty and reliably discriminating among given hypotheses. 
 

For instance, if assessing the nuclear capabilities of a hostile country, there may be 
many uncertain observations: the cumulative nuclear-physics expertise, the quantity of 
obtained fissionable material, the location of nuclear research facilities, the identity of the 
key players, external networks of clandestine procurement, and the allocated budget. 
Reducing one uncertainty (e.g. ascertaining the quantity and type of fissionable materials) 
may prove more important than another (e.g. the exact number of scientists on the project) 
in determining whether the country can quickly develop nuclear weapons, and therefore 
worth greater efforts (e.g. risking a human intelligence asset).  The developed prototype 
tools helps to make such determinations.  

Functionally, we have built software tools that reason with uncertainties as probability 
density functions over observables, with the objectives of determining whether there is 
enough information to discriminate among competing hypotheses; if not, exactly what new 
information should be gathered. 

The specific role of these tools within the Proactive Intelligence (PAINT) architecture 
includes the quantitative evaluation of the likelihood of given hypotheses, as well as the 
information value of given observations and probes. Our tools provide this information to 
the Probe Strategy module, which is another component of PAINT, delivered by Lockheed 
Martin, and the Probe Strategy module uses it to construct intelligence collection plans. 
Our main software products and related deliverables for the PAINT program are as follows: 
 

• Developed a library of data structures and procedures for probability computations 
based on uncertain data, represented by probability density functions. 

• Developed probabilistic mechanisms for evaluating the likelihood of given hypotheses 
and information value of observations and probes, and adapted them to the needs of the 
PAINT architecture. 

• Developed an Excel-based graphical user interface for the stand-alone use of our tools, 
which allows the viewing and editing of uncertain data. 

• Packaged the developed tools for the integration into the PAINT architecture, and for 
their stand-alone use through Excel.  
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Background and Problems Addressed 
 

When analysts process intelligence data, they usually have to work with uncertain and 
incomplete information. Standard software tools enforce the use of exact values or 
ranges, and provide almost no support for describing uncertainty, such as a probability 
distribution conditioned on thus-far available data. Nor does analytic software, to the best 
of our knowledge, provide for automated re-computing of said probability distributions 
upon receipt of new data. The long-term purpose of our work is to address these 
limitations, develop a general-purpose system for the processing of uncertain data, and 
integrate it with standard data-management tools, such as Excel and Oracle. 

Before the beginning of the PAINT program, we investigated techniques for 
representing uncertain nominals and numeric values as part of the Reflective Agents with 
Distributed Adaptive Reasoning project (RADAR) under Defense Advanced Research 
Projects Agency, and reported the results in a series of papers [Fink et al., 2006a; Fink et 
al., 2006b; Bardak et al., 2006a; Bardak et al., 2006b]. The developed tools allowed a 
human administrator to describe uncertain data related to volatile crisis situations, 
analyze its implications, and construct plans for coping with the evolving crisis. We also 
investigated techniques for analyzing massive intelligence data during work on the Audit 
Record Generation and Utilization System project under Disruptive Technologies 
Office/Advanced Research and Development Activity, and developed mechanisms for 
the indexing of massive structured data and fast retrieval of data that provided 
approximate matches to given queries [Fink et al., 2004a; Gazen et al., 2004; Carbonell 
et al., 2005; Carbonell et al., 2006; Jin and Carbonell, 2006]. On the negative side, the 
ARGUS tools did not support explicit representation of uncertainty, which limited their 
applicability in the analysis of uncertain and volatile situations. 

During the PAINT work, we have continued this research and investigated the problem 
of developing a general-purpose system for the representation and analysis of structured 
uncertain data; this system has been named RAPID. The system represents and updates 
uncertainty in a principled manner, permits inference over uncertain data, and suggests 
what new intelligence would be maximally definitive in uncertainty reduction. The latter 
capability is the most novel capability of RAPID; knowing what information would be 
useful to gather provides a proactive aspect to analysis. 
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Informal Example 
 

We begin with a simple example that requires distinguishing between two hypotheses. 
We consider the task of an economic analyst who is observing a small pharmaceutical 
company and trying to infer the plans of its management. 
 

The company has recently advertised the sale of a new medication, and it claims that 
its main focus is on expanding its production. The analyst however suspects that the 
company is working on another, more advanced medication, which has a potential for 
greater sales. If she is right, the company works on this new medication in secrecy, which 
is understandable, since it does not want to reveal its plans to the competitors. 

The analyst is trying to decide whether she is right based on available public data, 
along with some private data gained through her “special” channels, such as talking with 
her friends in pharmaceutical industry and hearing private opinions of fellow analysts. 
Thus, she had to distinguish between two mutually exclusive models: 
 

• M1: The company focuses on the production of its current medication. 
• M2: The company puts significant resources into development of a new medication. 
 

The analyst also has to account for the possibility that neither of her hypotheses is 
correct, and something entirely different may be in the offing. For instance, the company 
may switch to production of medical equipment or it may file of a bankruptcy. While the 
chances of these unexpected outcomes are low, they are not negligible. 

We suppose further that the analyst has some idea of prior probabilities from her past 
experience with such situations. For instance, she may believe that the prior probability 
of M1 is 0.6, that of M2 is 0.3, and the chances that neither hypothesis is correct are 0.1. 

If she had no other data, she would use these probabilities; however, she has other 
data, which include public accounting numbers provided by the company, statements of 
its president, announced contracts with other companies, news about recent 
pharmaceutical developments, and so on. While a lot of these data may be irrelevant or 
very inaccurate, some may turn out to be “gold nuggets” that would greatly help in her 
task. The analyst has to identify relevant data, evaluate the chances of each model, and 
decide which additional data she should gather to improve her evaluation. While these 
tasks may sound similar to standard Bayesian reasoning, there are several important 
differences, which lead to a novel challenging problem: 
 

• Available data may be correlated in complex ways; the analyst may not know about 
these correlations, and she cannot reliably determine which data are dependent on 
each other. For instance, two news articles may come from different sources (making 
them near-independent) or from the same source (making them highly dependent), 
and the analyst does not know which is the case. 

• The analyst may have a lot of data, for instance if the company is in the news and 
under public scrutiny. Or she may have very little data, for instance, if it is a new 
small company. In either case, she must make the best use of the available data, and 
make as accurate conclusions as she can. 
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• The analyst has to plan collection of additional data, which cannot be addressed by 
standard Bayesian techniques. 
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Objectives and Performance Goals 
 

We next describe the inputs and outputs of the RAPID module in the PAINT architecture, 
and the metrics for measuring its performance. We have not yet evaluated its 
performance according to these metrics since we have only recently completed building 
the system. We are now continuing this investigation beyond the end of the PAINT 
program, and we expect to have quantitative measurements in the next several months. 
 

Inputs and outputs 
 

The RAPID module of the PAINT architecture receives the following inputs: 
 

• Probabilistic pathway and leadership models, provided by the modeling components 
of the PAINT architecture. 

• Available external observations of the target scenario, which may include measures of 
the observation uncertainty. 

• A list of hypotheses that need to be confirmed, refuted, or sharpened. 
• A list of possible future observations and related active probes, as well as the prior 

probability distributions of these observations under each hypothesis, if known. 
 

RAPID evaluates the likelihood of each given hypothesis, ranks the hypotheses by their 
likelihood, and outputs the ranked list along with the probability of each hypothesis. It 
also evaluates the information value of potential future observations and probes. This 
information value is based on the expected reduction of the information entropy and 
related notion of the Kullback Leibler (KL)-distance. The system evaluates the expected 
entropy reduction for each possible observation and each probe, and selects the 
observations and probes with the greatest expected reduction. It ranks the observations 
and probes by their value, and outputs their ranked list along with the value estimates. It 
provides this information to the Probe Strategy module of PAINT, which then uses the 
resulting estimates to construct information-gathering strategies. 
 

Performance metrics 
 

The problem of building general-purpose systems for reasoning under uncertainty has not 
yet received much attention from the computer science community, and researchers have 
not developed standard performance metrics for such systems. While researchers have 
built a number of special-case systems (for example, see a review of such systems in a 
recent manuscript by Bardak, Fink, and Carbonell [Bardak et al., 2009]), they have not 
addressed a general case. The review of the previous work has revealed that the existing 
special-case metrics are not applicable to our PAINT work, and we have developed two 
new general-purpose metrics, both on the scale from −1.0 (worst) to 1.0 (best). The first 
shows the accuracy of evaluating the likelihood of given hypotheses, and the second is 
for the accuracy of evaluating the information value of observations and probes. We also 
outline metrics for evaluating the system scalability. 

Likelihood of given hypotheses: We measure the accuracy of hypothesis evaluation 
by comparing RAPID’s ranking of hypotheses with the ground-truth ranking. Specifically, 
suppose that RAPID needs to rank n different hypotheses, and their ground-truth ranking 
from the most likely to the least likely is H1, H2,…, Hn. Suppose further that RAPID 
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outputs a ranking G1, G2,…,Gn, which includes the same hypotheses in a different order. 
The number inv of inversions required to convert the output order G1, G2,…, Gn into the 
correct order H1, H2,…, Hn serves as the raw measure of the output quality. This value 
corresponds to the number of transpositions in the Bubble-Sort algorithm. The best 
possible value of this raw measure is 0, which would mean that the output order is 
perfectly correct. On the other hand, the expected value for a random ordering, which 
does not account for any available data, is n (n − 1) / 4. To normalize the raw measure to 
the [−1.0, 1.0] scale, we use the following expression as the final metric: 
 

Equation 1:  .
4/)1(

1
−

−
nn

inv
 

 

For a random ordering, the expected value of this normalized metric is 0.0; for the worst 
possible ranking, it is −1.0; and for the perfectly correct ranking, it is 1.0. In practice, we 
never expect to under-perform the random ordering, so the effective range is [0.0, 1.0]. 
The goal has been to achieve the initial performance of about 0.5 according to this 
metric, and then extend the system to reach the 0.9–1.0 range. 

Information value of observations and probes: The metric for evaluating potential 
observations and probes is analogous to that for hypothesis evaluation. We compare 
RAPID’s ranking of observations and probes by their information value with the ground-
truth ranking, and use Equation 1 as the final accuracy metric. The goal has been to 
achieve about the same performance as for the hypothesis evaluation; that is, to build an 
initial system with performance of about 0.5, and then extend it to reach the 0.9–1.0 
range. 

Scalability: We use two metrics for evaluating the scalability of RAPID. The first is 
the maximal number of hypotheses that can be evaluated within a one-minute time limit, 
and the second is the maximal number of potential observations and probes that can be 
ranked within the same one-minute limit. The goal has been to achieve the initial 
performance of about 100, and then build a far more scalable system, which will process 
100,000 hypotheses and probes in a minute. 

Note that this scalability metric is only for evaluating the probability computations 
within our module, and it does not include the time required for running the related 
simulations by modeling components. The evaluation of the modeling time is a separate 
problem, which is not directly related to the performance requirements of our module. In 
the current version of the PAINT architecture, the computational time of our module is 
about two orders of magnitude smaller than the modeling time. Thus, it is not on a critical 
path for improving the overall performance of the PAINT architecture. 
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Technical Approach 
 

Uncertain data: We have developed a mechanism for encoding uncertain data, which 
supports the representation of uncertain nominal values, strings, numbers, math functions, 
and dependencies among the available data. We represent an uncertain nominal or string 
by a probability distribution over possible values, and an uncertain integer or real number 
by a distribution over possible ranges. Furthermore, we allow specification of uncertain 
mathematical functions by piecewise-linear functions with uncertain coordinates of 
segment endpoints, and by probability distributions over multiple possible functions. 

We have implemented a prototype library that supports the application of all standard 
arithmetic and logical operations to uncertain values. For instance, it allows computing 
the sum of uncertain values, applying an uncertain function to an uncertain value, and 
determining the probability that two uncertain strings are identical. It also allows 
qualitative representation of uncertainty, such as “completely unknown” values. 

We have also developed a basic language for describing dependencies among 
uncertain data by inference rules, based on the extension of the inference-rule 
mechanisms developed during the work on PRODIGY [Veloso et al., 1995; Fink and 
Blythe, 2005] and RADAR [Fink et al., 2006a; Fink et al., 2006b]. We represent each 
inference rule by its preconditions and effects. The system supports the use of all 
standard arithmetic and logical operations, as well as user-specified mathematical 
functions, in defining rule effects. 
 

Identification of critical uncertainties: The system determines which of the uncertain 
or missing data has the greatest impact on the completion of current tasks, such as 
discriminating among hypotheses, and which additional data would help to complete 
these tasks. For each task, the system identifies the relevant data, evaluates the impact of 
each related uncertainty on the task completion, and ranks these uncertainties by their 
impact. The evaluation procedure uses game-theoretic search through possible data-
collection scenarios. That is, it considers potential data-collection strategies and all 
possible outcomes of each strategy, determines the impact and likelihood of each 
outcome, and identifies the strategy that is most likely to lead to the task completion. 

We do not make any assumptions about the volume of available information, and the 
described technique works both in data-rich and data-poor situations. If we have a large 
volume of data, the technique helps identify the most important indicators among the 
available information. If we have only a few observations, the technique makes the best 
use of this limited data. 

We now give a more detailed description of the uncertainty-analysis procedures 
integrated into the PAINT architecture. We assume that the target of information gathering 
is some organization, such as a business, terrorist group, or hostile government. We are 
interested in a specific aspect of the organization, called intent, which can take one of 
several mutually exclusive values M = {M1… Mn}. These values are our hypotheses, and 
we have a prior probability distribution Q over them. An example of such hypotheses 
may be the intent of an organization to enter certain markets, which is not directly 
observable. We can observe several other aspects of the organization {Xi}, each of which 
can take several discrete values. For example, we may observe the purchases of certain 
machinery and hiring of specialists. We denote the set of all observations by O. 
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The organization has several control points that we can influence through probes. For 
example, we may be able to influence the ability of the organization to obtain funding or 
hire certain specialists. Each control point is represented by a variable whose value 
affects the organization behavior. We have a black-box model of the organization, which 
takes the control point settings {Ri} and the hypotheses as parameters, and produces the 
probability distributions of the observable variables. Thus, we are provided with 
conditional probability distributions P(Xi | Mj, Rk). 

The developed RAPID tools perform three functions: 
 

• Quantitative assessment of the information value of control-point settings. 
• Quantitative assessment of the information value of knowing more precisely the value 

of an individual control-point variable. 
• Revision of the hypothesis probability estimates based on new observations. 
 

To describe how we are accomplishing the first two tasks, we first define the notion 
of information value. This value of an observation is not an absolute quantity; it depends 
on what we previously knew and what we may do differently as a result of the new 
observation. Suppose that we have a set of available actions Φ. Each action α ∈ Φ incurs 
different costs Cα(Mi) under different conditions M1, …, Mn. For example, our action may 
be to buy some commodity in an anticipation of the target organization’s entry into a 
specific market. If it does, our final costs will be low; if not, the costs will be high. Given 
a probability distribution Q over M, we can anticipate the expected cost of this action: 
 

Equation 2:  Ĉα (Q) = ∑k Cα (Mk)·P(Mk) 
 

Given Q, a rational decision maker would select the course of action Φ(Q) that minimizes 
ĈΦ(Q)(Q). Instead of costs, we can use utilities, which are the negation of the costs. 

We can define the value of information that leads us to believe that M has a different 
distribution Q’ instead of Q. If we do not get this information, we select actions based on 
Q, but they incur costs according to Q’. These costs are no smaller than the costs incurred 
by the optimal actions selected based on Q’. The difference is the information value: 

 

Equation 3:  V(Q’,Q) = ĈΦ(Q)(Q’) − ĈΦ(Q’)(Q’) 
 

Thus, in order to determine the value of information that changes our beliefs from Q to 
Q’, we need a decision model that defines the expected costs of acting based on Q in the 
world described by Q’. 

To compare it to the more traditional definition of information gain, consider the 
following model. We have two hypotheses, M1 and M2, which stand for hostile vs. benign 
intentions of our adversary. Our decision involves allocating a proportion t ∈ [0, 1] of our 
budget to military preparations. The cost of our decision is −log t in case of M1 and 
−log (1−t) in case of M2. Thus, if we spend no money and the adversary turns out hostile, 
the cost is infinitely high. The same is true if we spend our entire budget and the 
adversary turns out benign. Assuming that under Q, P(M1) = p and under Q’, P(M2) = p’, 
the expected cost of the decision under Q is minimized when t = p and under Q’ when t = 
p’. Then, the expected cost ĈΦ(Q’)(Q’) of the optimal decision Φ(Q') under Q' is 
 

Equation 4:  ĈΦ(Q’)(Q’)= −p’log p’ – (1 – p’)log (1 – p’) = H(Q’), 
 

where H(Q’) is Shannon’s entropy. The expected cost ĈΦ(Q)(Q’) of the decision Φ(Q) 
under Q' is 
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Equation 5:   ĈΦ(Q)(Q’)= −p’log p  – (1 – p’)log (1 – p) = H(Q’,Q), 
 

where H(Q’,Q) is Shannon’s cross entropy and the information value V(Q’,Q) is 
 

Equation 6:   V(Q’,Q) = H(Q’,Q) − H(Q’) = DKL(Q’||Q), 
 

where DKL(Q’||Q) is the KL divergence between the prior and the posterior probability 
distribution, which is also known as information gain. 

In real applications, the costs of our decisions may not be as drastic as in the above 
example, and the information value function may not be as mathematically convenient as 
the KL divergence. Our definition of information value is a generalization of the 
traditional information gain. We assume that the domain experts supply us with a 
decision model that defines cost functions. If we do not have this expert advice, we use 
the standard information gain.  

We now show how to compute the expected information value of a control point. The 
the PAINT modeling components produce conditional probability distributions P(Xi | Mj, 
Rk) for each observation variable Xi. First, we discuss the case of a single observation 
variable O = {oi}. For each value oi, we compute the posterior probability distribution 
Q’(oi, Rk) of M and obtain the information value of oi: 
 

Equation 7:  U(oi, Rk) = V(Q’(oi, Rk), Q) 
 

Q’(oi, Rk) is computed by calculating P(Mj | oi, Rk) for all j. 
 

Equation 8:  P(Mj | oi, Rk) = P(oi | Mj, Rk) ·P(Mj, Rk) / P(oj, Rk) 
 

Since the intent M and the control point setting R are independent, we conclude that 
 

Equation 9:  P(Mj | oi, Rk) = P(oi | Mj, Rk) ·P(Mj) / ∑nP(oj | Mn, Rk) ·P(Mn) 
 

All quantities in the above formula are known: P(oi | Mj, Rk) come from the PAINT model 
and P(Mj) are the prior beliefs. Thus, given the information value function V, we can 
compute V(oi) for the control point Rk. The expected information value Ǔ for Rk is 
 

Equation 10:  Ǔ(Rk) = ∑i [U(oi, Rk) ·P(oi | Rk)] = ∑i [U(oi, Rk) ·∑n [P(oj | Mn, Rk) ·P(Mn)]] 
 

This approach works only when we have a single observation. In reality, we may 
have thousands of observation variables. Combining them into one and obtaining its joint 
probability distribution is impractical. Therefore, we use an approximate solution. For 
each control point setting Rk, we select the observation variable Xi that maximizes the 
expected information value of Rk. Then Ǔi(Rk), which is the expected information value 
based on observing only Xi, becomes our lower-bound approximation of Ǔ(Rk). If we 
make an actual observation under Rk conditions, we use the value of Xi to compute the 
resulting posterior distribution of M. 
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Experimental Evaluation 
 

The experiments have two objectives: (1) the assessment of methods for calculating 
information value of data potentially obtained through intelligence gathering and (2) the 
assessment of methods for calculating the information value of probes. 

We have experimented with four PAINT models: a benign model M1 and three 
nefarious models M2, M3, and M4. Model M2 contains all segments of Model M1; 
Model M3 contains all segments of Model M2; and Model M4 contains all the segments 
of Model M3. As a result, M2 is the closest (most difficult to distinguish) to M1, while 
M4 is the furthest. M1 contains 43 segments, M2 contains 50 segments, M3 contains 53 
segments, and M4 contains 57 segments. We assume that intelligence reports provide the 
percent completion information for two different weeks for each of the 42 benign 
segments, giving us 84 observation variables. We also assume that the values of these 
variables are rounded to fit into 22 bins: bin 1 if the segment has not been started; bin 2 if 
the percent completion is between 0 and 5%; bin 3 between 5% and 10%, and so on; bin 
22 corresponds to the completed segment. We have eliminated all nefarious segments 
with no influence on the observation variables, which explains the relatively small 
number of the remaining segments. 

Each segment specifies the expected progress for each week, which is proportional to 
the allocated resources. We treat the expected progress as the mean and multiply it by a 
normally distributed “jitter” with the standard deviation 3% (we also tried other values of 
the standard deviation), which introduces considerable non-determinism. We consider 
four probes, that is, modifications of resource allocations, which have different effects on 
each model. The use of probes increases the total number of different models to 20. 

Each simulation run of the model produces 84 bin values. We have run 11,000 
simulations to get estimates of the bin probabilities for each model. We have computed 
999 trailing averages of 10,000 simulations. The standard deviation of the averages is less 
than .002 for all variables. 

Given an intelligence report, the system assesses the likelihood of the underlying 
model. Since the dimensionality of the problem (84 variables) makes the direct 
calculation of the posterior probabilities intractable, we need to use an approximate 
method. We have tested ten such methods by running 2000 simulations. In each 
simulation, we have used each model to produce an intelligence report containing 84 bin 
values. Based on this report, each algorithm selects the most likely underlying model. 
The score for each algorithm is defined as the proportion of incorrect model selections. 

To test the volatility of the data, we have run 3000 simulations and computed 999 
trailing score averages of 2000 simulations. The standard deviation of the averages for 
the most common information-gain algorithm is less than .005, which means that score 
differences in excess of 3% are statistically significant. The intelligence-report data 
points with probability less than the “credulity threshold” of .02 are excluded. If all data 
points of a report are below the credulity threshold, it is a good indication of the “none of 
the above” case, which means that the system rejects all given models. 

The first set of experiments involves pairwise comparisons of models. We tested the 
following selection algorithms: 
 

• Ind: all variable are treated as if they were independent 
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• Rand: we select one representative variable at random and compute the posteriors as 
if it were the only variable 

• CG (“center of gravity”): for each model, we compute the posteriors for each variable 
and take the average 

• Exp IG: before looking at an intelligence report, we select the variable that gives the 
highest expected information gain; we then use its value from the report 

• Exp Ent: as above, we select the variable that gives us the lowest expected entropy 
• Exp IV: as above, we select the variable that gives us the highest expected 

information value based on the cost function of the selection decision 
• Exp JSD: as above, we select the variable that gives us the highest expected Jensen-

Shannon Divergence between the distributions of binary probabilities of the two 
models  

• IG: we compute the posteriors for each variable in the report and then select the one 
with the highest information gain (KL divergence) between the posterior and the prior 

• Ent: as above, we compute the posteriors for each variable and then select the one 
with the lowest entropy 

• IV: as above, we compute the posteriors for each variable and then select the one 
with the highest information value based on the cost function of the selection decision 

 

The following table shows the experimental results. The notation m1_3, for example, 
indicates Model 1 with modifications caused by Probe 3. The prior probability of the 
benign model is 50%. 
 

Table 1: Experimintal results when treating variables as if independent 
Prior=.5 indep rand cg exp ig exp ent exp iv exp jsd ig ent iv 

m1_1 vs m2_1 0.50 0.47 0.48 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

m1_2 vs m2_2 0.51 0.43 0.15 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

m1_3 vs m2_3 0.50 0.49 0.51 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

m1_4 vs m2_4 0.49 0.46 0.33 0.11 0.11 0.11 0.11 0.13 0.13 0.13 

m1_5 vs m2_5 0.49 0.47 0.38 0.20 0.20 0.20 0.20 0.18 0.18 0.18 

m1_1 vs m3_1 0.51 0.46 0.36 0.16 0.16 0.16 0.16 0.17 0.17 0.17 

m1_2 vs m3_2 0.50 0.40 0.13 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

m1_3 vs m3_3 0.50 0.48 0.47 0.21 0.21 0.21 0.21 0.19 0.19 0.19 

m1_4 vs m3_4 0.50 0.46 0.30 0.11 0.11 0.11 0.11 0.13 0.13 0.13 

m1_5 vs m3_5 0.51 0.45 0.30 0.16 0.16 0.15 0.16 0.10 0.10 0.10 

m1_1 vs m4_1 0.50 0.41 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

m1_2 vs m4_2 0.51 0.40 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

m1_3 vs m4_3 0.50 0.41 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

m1_4 vs m4_4 0.51 0.41 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

m1_5 vs m4_5 0.51 0.39 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

The table shows that treating the variables as if they were independent is not a good idea; 
in this case, the algorithm cannot distinguish between any two models. Random selection 
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of the representative variable does a little better because sometimes a good variable is 
selected by chance. The “center of gravity” algorithm is better yet, but not nearly as good 
as the rest of the algorithms. 

The next four algorithms select a representative variable prior to obtaining 
intelligence reports. As expected, when the prior probability of the benign model is 50%, 
all four algorithms give essentially the same answer. More surprisingly, no significant 
differences appear when the prior is 70%, although the performance of all algorithms 
deteriorates by 1–10% when the mix between the two models remains fifty-fifty. 

Because these four algorithms select a representative variable prior to obtaining the 
intelligence reports, they can be used to rank the available probes. The table below shows 
the best expected values of the measures computed by the four algorithms. The ranking 
of the probes is exactly the same. 
 

Table 2: Best expected values 
Prior=.5 variable exp ig exp ent exp iv exp jsd 

m1_1 vs m2_1 60 0.04 0.04 0.10 0.04 

m1_2 vs m2_2 18 0.96 0.96 0.49 0.96 

m1_3 vs m2_3 38 0.35 0.35 0.27 0.35 

m1_4 vs m2_4 70 0.75 0.75 0.39 0.75 

m1_5 vs m2_5 46 0.45 0.45 0.29 0.45 

 
The last three algorithms select the “best” posteriors of all variables based on the 
calculation of information gain, entropy, and information value. Again, as expected, 
when the prior probability of the benign model is 50%, all three algorithms give 
essentially the same answers. More surprisingly, the answers are essentially the same as 
from the four representative variable algorithms. When the prior is set to 70%, some 
differences between the three algorithms begin to appear without systematically favoring 
any one of them as shown in the table below.  
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Table 3: Prior is set to 70% 

Prior=.7 exp ig exp ent exp iv exp jsd ig ent iv 

m1_1 vs m2_1 0.49 0.50 0.50 0.50 0.49 0.50 0.50 

m1_2 vs m2_2 0.01 0.01 0.01 0.01 0.01 0.00 0.19 

m1_3 vs m2_3 0.30 0.30 0.30 0.30 0.30 0.43 0.30 

m1_4 vs m2_4 0.14 0.14 0.14 0.14 0.10 0.14 0.11 

m1_5 vs m2_5 0.34 0.33 0.34 0.34 0.19 0.33 0.20 

m1_1 vs m3_1 0.23 0.23 0.23 0.23 0.16 0.25 0.16 

m1_2 vs m3_2 0.01 0.01 0.01 0.01 0.04 0.00 0.20 

m1_3 vs m3_3 0.29 0.29 0.29 0.29 0.23 0.41 0.25 

m1_4 vs m3_4 0.13 0.13 0.13 0.13 0.11 0.10 0.13 

m1_5 vs m3_5 0.21 0.21 0.21 0.21 0.11 0.12 0.13 

m1_1 vs m4_1 0.00 0.01 0.00 0.00 0.00 0.00 0.25 

m1_2 vs m4_2 0.00 0.01 0.00 0.00 0.08 0.00 0.33 

m1_3 vs m4_3 0.01 0.01 0.00 0.00 0.00 0.00 0.23 

m1_4 vs m4_4 0.00 0.01 0.00 0.00 0.00 0.00 0.25 

m1_5 vs m4_5 0.00 0.01 0.00 0.00 0.00 0.00 0.28 
 

The second set of experiments addresses the selection of the best model among four 
candidates. The following table shows the results. 
 

Table 4:  Results of selection of the best model 

Prior=.5 exp ig 4 exp iv 4 ig 4 iv 4 

Probe 1 0.51 0.50 0.39 0.57 

Probe 2 0.51 0.39 0.24 0.46 

Probe 3 0.50 0.53 0.45 0.57 

Probe 4 0.50 0.51 0.34 0.55 

Probe 5 0.50 0.50 0.31 0.52 
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Since the available data are insufficient for a reliable selection, the algorithms make a 
number of wrong conclusions; however, the results are much better than random. The 
information-gain algorithm performs somewhat better than the rest. 

The final set of experiments also involves four models, but we are now trying to 
distinguish between the first model and the rest, which is an easier task. The following 
table shows the results. 

Table 5:  Results when trying to distinguish 1st model from rest. 
Prior=.5 exp ig 1+3 exp iv 1+3 ig 1+3 iv 1+3 

Probe 1 0.24 0.23 0.22 0.25 

Probe 2 0.06 0.06 0.12 0.19 

Probe 3 0.14 0.14 0.14 0.17 

Probe 4 0.06 0.06 0.08 0.13 

Probe 5 0.11 0.11 0.13 0.16 
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Accomplishments 
 

Technical accomplishments: The role of the RAPID tools within PAINT is to evaluate the 
likelihood of a given hypotheses and the information value of observations and probes. In 
the diagram below, we show the overall PAINT architecture and the position of our tools 
within this architecture, which is the RAPID Hypothesis Classifier component at the bottom. 
The main technical accomplishments of our work have been as follows: 
 

• Developed a mechanism for the representation of uncertain structured data by 
probability density functions and if-then inference rules; it supports nominal values, 
numeric values, strings, and dependencies. 

• Developed a library of procedures for probability computations based on uncertain 
data. 

• Developed probabilistic mechanisms for evaluating the likelihood of hypotheses and 
information value of observations and probes, and adapted them to the needs of the 
integrated PAINT architecture. 

• Developed an Excel-based graphical user interface for the stand-alone version of the 
RAPID tools, which allows the viewing and editing of uncertain data. 

• Packaged the RAPID tools for the integration into the PAINT architecture and for the 
stand-alone use through Excel. 

 

 
 
 
 

Products: We have delivered two main products for the integration into the PAINT 
architecture, which are part of the RAPID Hypothesis Classifier box in the diagram: 
 

Observations, O

Probes

Decision 
Model
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MIT

Lockheed Martin

NSI

BAE Systems 

UC Berkeley

CMU- Dynamix

Probe Strategy Development

Dynamic Target System Model

RAPID Hypothesis Classifier

Leadership Dynamic Social 
Network Model

P 0={ P(H i)} 
P 1={P<Hi|O>}

Response

Assess

Figure 1: PAINT Architecture
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• Hypothesis evaluation: This module is responsible for evaluating the likelihood of 
each given hypothesis; it accounts for the prior probabilities and new uncertain 
evidence. It also evaluates the likelihood that none of the given hypotheses are 
correct, thus detecting “surprise” situations. 

• Evaluation of observations and probes: This module is responsible for evaluating the 
information value of specific observations and active probes. The evaluation results 
serve as input to the Probe Strategy module, which is the top box on the diagram. 

 

We have integrated these two modules with the PAINT architecture. We have also 
developed a stand-alone version integrated with Excel, which allows the use of the 
standard Excel functionality with the RAPID uncertainty analysis tools. 
 

Publications: We have published a conference paper based on the initial work under the 
PAINT program: 
 

• Bin Fu, Eugene Fink, and Jaime G. Carbonell. Analysis of uncertain data: Tools for 
representation and processing. In Proceedings of the IEEE Conference on Systems, 
Man, and Cybernetics, 2008. 

 

We are currently working on two more conference papers, which will describe the 
developed strategies for the hypothesis evaluation and probe selection. 
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Recommendations for Future Research 
 

We believe that our work under PAINT can be continued in two main directions. The first 
is the construction of general-purpose tools for the analysis and integration of uncertain 
data, and the second is the application of these tools to specific practical tasks. 
 

General-purpose tools for the analysis and integration of uncertainty 
 

A major long-term challenge is to develop a suite of general-purpose software tools for 
the viewing, analysis, and integration of uncertain data, which will help military and 
business analysts automate routine tasks involved in the evaluation of uncertain factors. 
The concept behind these tools is similar to the concept of a spreadsheet for the analysis 
of complex numeric data. The tools will enable analysts to build task-specific 
applications for the uncertainty analysis, quickly propagate basic reasoning results 
through large-scale datasets, and obtain visual representation of these results, much in the 
same way as Excel helps build and view task-specific numeric applications. In other 
words, the challenge is to build an advanced Excel-like spreadsheet package for the 
uncertainty processing, what-if analysis, and planning of additional data collection. 

This challenge includes the development of mechanisms for the representation and 
fast processing of structured uncertain data, and integration of these mechanisms into the 
standard Excel software. The resulting system should enable military analysts, who may 
not have programming experience or advanced math background, to process complex 
uncertain data and build related spreadsheet applications for new tasks, in the same way 
as users without programming experience build task-specific Excel sheets. In particular, 
it should support the following capabilities: 
 

• Representation of incomplete and uncertain data, including error margins, min-max 
ranges, sets of possible values, probability distributions, and qualitative uncertainty. 

• Analysis of given hypotheses, evaluation of the certainty of specific conclusions, and 
identification of critical missing data related to specific reasoning steps. 

• Identification of important contingencies, semi-automated construction of related 
what-if scenarios, and evaluation of their impact on the overall reasoning. 

• Semi-automated integration of data from various sources, which may have different 
levels of accuracy, reliability, and “softness”; for example, integrated use of sensor 
data, human intelligence reports, and expert opinions. 

• Continuous real-time update of the situation assessment based on a (possibly 
massive) stream of newly incoming data. 

 

The related work is likely to involve the following research and engineering challenges, 
although this list may not be complete: 
 

• Develop fast scalable algorithms for all main operations on uncertain data, and ensure 
that the speed of uncertain-data processing and related inference propagation is close 
to the normal speed of spreadsheet computations. 

• Build a suite of tools for the identification of critical uncertainties, semi-automated 
interactive analysis of if-then scenarios, and planning of additional data collection. 
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• Design a general-purpose Application Programming Interface (API) for the 
integration of the proposed system with standard database systems, such as Oracle, 
and with streams of incoming new data; ensure the scalability of processing massive 
data streams through this API. 

• Implement Graphical User Interface tools that enable analysts without programming 
experience to use the proposed system. 

 

Specialized applications for the analysis of uncertain data 
 

Although researchers have investigated a number of situation-awareness models, such as 
social networks, production pathways, and management decision processes, they have 
done almost no work on the explicit modeling of related uncertainties. In other words, 
researchers usually develop fully deterministic models, based on the implicit assumption 
that they can ignore the related uncertainties without a major loss of the reasoning 
accuracy. This traditional assumption may be a legacy of standard software applications, 
such as Excel and Oracle, which provide little support for the analysis of uncertainty and 
what-if scenarios. 

On the other hand, human experts who deal with practical problems have 
accumulated much evidence on the importance of explicit reasoning about uncertainty 
and contingencies. For example, military analysts often point out that even the best-laid 
plans tend to go awry when they do not account for the current and future uncertainties.  

The work under the PAINT program has confirmed that deterministic models are often 
insufficient for an accurate evaluation and prediction of complex systems, and that 
analysts need advanced tools for the explicit uncertainty analysis. Specifically, our 
experiments with production pathway and resource models, which were used in 
evaluating the uncertainty-analysis tools, have shown that even simple models exhibit a 
“chaotic” behavior in most cases, which means that small input changes often cause 
drastic output changes. Thus, if we do not account for uncertainty and use deterministic 
models with deterministic inputs, then we often get uninformative results, since minor 
changes to the models or their inputs, which are likely in uncertain situations, would 
invalidate most conclusions. The PAINT modeling teams have reported similar 
observations on their more advanced pathway, resource, and social-network models. 

To address this need, we have developed a suite of prototype data structures and 
algorithms for the analysis of uncertain data and evaluation of its impact on the certainty 
of specific conclusions. A related future work direction is to integrate the developed 
algorithms with several special-purpose applications and demonstrate that they improve 
the effectiveness of these applications. This effort is likely to involve the following three 
research and engineering challenges. 
 

• Extend the initial data structures and algorithms for the processing of uncertain data; 
improve their scalability and enhance the related contingency analysis. 

• Develop practical applications for the uncertainty processing and what-if analysis, by 
integrating these algorithms with earlier deterministic-analysis applications. 

• Integrate the resulting applications with mechanisms for the processing of massive 
streams of uncertain data. 

 

Many of these interesting challenges will be addressed in future developments of 
proactive intelligence and reasoning under uncertainty. 
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List of Acronyms 
 
API – Application Programming Interface 
KL - Kullback Leibler 
PAINT – ProActive INTelligence 
RADAR - Reflective Agents with Distributed Adaptive Reasoning project 
RAPID – Representation and Analysis of Probabilistic Intelligence Data 
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